La minería de datos en el descubrimiento de perfiles de deserción estudiantil en la Universidad De Nariño

Authors

  • Ricardo Timarán Pereira Doctor en Ingeniería énfasis Ciencias de la Computación. Director Grupo de Investigación GRIAS. Profesor Asociado Departamento de Sistemas. Facultad de Ingeniería. Universidad de Nariño. San Juan de Pasto, Colombia,

Keywords:

Student desertion, Patterns discovery, Data mining

Abstract

The student desertion in undergraduate programs of most institutions of higher education in
both Colombia and Latin America is a problem that has a multidimensional impact on the social
and economic development of a country. Despite this, few studies have been conducted at the
Nariño University regarding this problem to implement effective strategies to help minimize this
phenomenon and lead to improving the quality of education at the university.Through data mining
techniques it is possible to predict when a student is going to abandon their studies, applying the data
stored in the databases of an educational institution, to take early action to enable it to reduce this factor. This paper describes the knowledge discovery process that is held at the Nariño University in determining the university community profiles low academic performance and student desertion using the historical database of undergraduate students. This process is supported by TariyKDD, a data mining tool for free distribution, developed in the KDD laboratories of Research Group GRIAS of the Department of Systems of Engineering Faculty.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2009-12-30

How to Cite

1.
Timarán Pereira R. La minería de datos en el descubrimiento de perfiles de deserción estudiantil en la Universidad De Nariño. Univ. Salud [Internet]. 2009Dec.30 [cited 2024Nov.21];1(11). Available from: https://revistas.udenar.edu.co/index.php/usalud/article/view/218

Issue

Section

Otros

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.