contadores web
Skip to main navigation menu Skip to main content Skip to site footer

Scientific and technological research article

Vol. 19 No. 1 (2017)

Model of sustainable utilization of organic solids waste in Cundinamarca, Colombia

DOI
https://doi.org/10.22267/rus.171901.75
Submitted
April 12, 2016
Published
2017-05-04

Abstract

Introduction: This article considers a proposal of a model of use of organic solids waste for the department of Cundinamarca, which responds to the need for a tool to support decision-making for the planning and management of organic solids waste. Objective: To perform an approximation of a conceptual technical and mathematician optimization model to support decision-making in order to minimize environmental impacts. Materials and methods: A descriptive study was applied due to the fact that some fundamental characteristics of the studied homogeneous phenomenon are presented and it is also considered to be quasi experimental. The calculation of the model for plants of the department is based on three axes (environmental, economic and social), that are present in the general equation of optimization. Results: A model of harnessing organic solids waste in the techniques of biological treatment of composting aerobic and worm cultivation is obtained, optimizing the system with the emissions savings of greenhouse gases spread into the atmosphere, and in the reduction of the overall cost of final disposal of organic solids waste in sanitary landfill. Based on the economic principle of utility that determines the environmental feasibility and sustainability in the plants of harnessing organic solids waste to the department, organic fertilizers such as compost and humus capture carbon and nitrogen that reduce the tons of CO2.

References

  1. Gardner G. Municipal Solid Waste Growing. Worldwatch Vital Signs. 2012 April. Disponible en: http://vitalsigns.worldwatch.org/vs-trend/ municipal-solid-waste-growing.(2nd).
  2. Pires A, Martinho, Chang NB. Solid waste management in European countries: A review of systems analysis techniques. Journal of Environmental Management. 2011 December; 92(1033 -1050).
  3. Wen-cong L, Yong-xi M, Bergmann H. Technological Options to Ameliorate Waste Treatment of Intensive Pig Production in China: An Analysis Based on Bio-Economic Model. Journal of Integrative Agriculture. 2014 February; 13(443-454).
  4. Juul N, Münster M, Ravn H, Söderman M. Challenges when performing economic optimization of waste treatment: A review. Waste Management. 2013 September; 33(1918 - 1925).
  5. Ahmed Bazmia A, Zahedia G. Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review. Renewable and Sustainable Energy Reviews. Renewable and Sustainable Energy Reviews. 2011 October; 15(3480 - 3500).
  6. SSPD. Diagnóstico Sectorial de Plantas de Aprovechamiento de Residuos Sólidos. Sectorial. Bogotá: Documento de Superintendencia de Servicios Públicos Domiciliarios, Colombia; 2008. Report No.: http://www.superservicios.gov.co/
  7. Abu Qdais H, Abdulla F, Qrenawi L. Solid Waste Landfills as a Source of Green Energy: Case Study of Al Akeeder Landfill. Jordan Journal of Mechanical and Industrial Engineering. 2010 Jun; 4(69-74).
  8. Lino F, Bizzo W, Da Silva E, Ismail K. Energy impact of waste recyclable in a Brazilian metropolitan. Resources, Conservation and Recycling. 2010 September; 54(916–922).
  9. Lino F. Consumo de Energia no Transporte da Coleta Seletiva de Residuo Sólido Domiciliar no Município de Campinas (SP). Universidade Estadual de Campinas. 2009 May; FEM/UNICAMP. Campinas, Brasil.(s.n.).
  10. MAVDT. Construcción de criterios técnicos para el aprovechamiento y valorización de residuos sólidos orgánicos con alta tasa de biodegradación, plásticos, vidrio, papel y cartón. MAVDT. 2008 Diciembre; Manual: Generalidades 1(25 - 91.).
  11. Gobernación Cundinamarca. PGIRS. Plan de gestión integral de residuos orgánicos de Cundinamarca. 2014.
  12. FAO. Estimación de emisiones de gases efecto invernadero en la agricultura. Manual par abordar los requisitos de los datos para los paises en desarollo. Roma: Organización de las naciones unidas para la alimentación y la agricultura; 2015.
  13. Vergel. Metodología. Un manual para la elaboración de diseños y proyectos de investigación. Compilación y ampliación temática. Publicaciones Corporación UNICOSTA. Barranquilla. 2010.
  14. Hurtado J. Metodología de la investigación holística. Direccción de Investigaciones y Postgrado ed. UNA, editor. Caracas - Venezuela: Universidad Nacional Abierta; 2000.
  15. Minoglou M, Komilis D. Optimizing the treatment and disposal of municipal solid wastesusing mathematical programming—A case study in a Greek region. Conservation and Recycling. 2013 November; 80(46 – 57).
  16. Gobernación de Cundinamarca. Huella de carbono CO2. Disponible en: http://huellacarbono.cundinamarca.gov.co/modules/mod_calculo_personal/
  17. Rogger C, Beaurain F, & S. Sc. Composting projects under the Clean Development Mechanism: Sustainable contribution to mitigate climate change. Waste Management. 2011.
  18. Gobernación de Cundinamarca. Huella de carbono CO2. 2014. Disponible en: http://huellacarbono.cundinamarca.gov.co/modules/mod_calculo_personal/
  19. Rincón Soto C. Guía de costos para micro y pequeños empresarios: una manera fácil y sencilla de creer Bogotá D.C: ECOE EDICIONES; 2011.
  20. Púlido J. Entrevista en residuos sólidos orgánicos (S. Castañeda E, editor.; 2014.
  21. Miller C, Heeren V, Hornsby J. Matemática y Razonamiento y Aplicaciones. Décima Edición ed. México: Pearson; 2006.
  22. Ruggieri L, Cadena E, Martinez-Blanco J, y otros. Recovery of organic wastes in the Spanish wine industry. Technical, economic and environmental analyses of the composting process. Journal Cleaner Production. 2009 June; 17(830–838)

Downloads

Download data is not yet available.