Application of the nanobiotechnology with the system CRISP-Cas

Authors

DOI:

https://doi.org/10.22267/rus.171903.102

Keywords:

Biotechnology, Recombinant, CRISPR-associated proteins, Immunologic memory, Genetic engineering

Abstract

Introduction: Nanobiotechnology and synthetic biology are sciences that impact today with the launching of innovative and beneficial applications for the human being. These sciences have been amalgamated to manufacture new components for the construction of totally artificial cells and the creation of synthetic biomolecules. Objective: To know the applications of nanobiotechnology related to the use of the system CRISPR/Cas in the storage of bacterial DNA and therapeutic alternatives. Materials and methods: A bibliographical review on the main applications of nanobiotechnology was carried out in ScienceDirect, SciELO, PubMed databases and in magazines such as: Nature Biotechnology, Biochemistry, Science and Journal Microbiology. Results: The literature review describes and analyzes the new nanobiotechnology applications used to write information in the genetic code of bacterial cells, in which the system is used based on short grouped and regularly interspaced palindromic repetitions (CRISPR/Cas) and the production of synthetic DNA, as well as therapeutic alternatives related to gene therapy. Conclusion: Among the nanobiotechnology applications, two methods to record information in the DNA of bacterial cells Escherichia coli and Sulfolobus Tokodai have been shown, which are linked to the use of the system CRISPR/Cas and the production of synthetic DNA, as well as the use of CRISPR/Cas in gene and cellular therapy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Liceth Xiomara Sáenz-Castiblanco, Grupo de Investigación Bacteriología y Laboratorio Clínico, Universidad de Boyacá. Tunja, Colombia

Boyacá

Maritza Angarita-Merchán, Grupo de Investigación Bacteriología y Laboratorio Clínico, Universidad de Boyacá. Tunja, Colombia

Boyacá

Diana Paola Lopez-Velandia, Grupo de Investigación Bacteriología y Laboratorio Clínico, Universidad de Boyacá. Tunja, Colombia

Boyaca

References

Pájaro-Castro N, Olivero-Verbel J, Redondo-Padilla J. Nanotecnología aplicada a la medicina. Revista Científica Guillermo de Ockham. 2013;11(1):125-1.

Bernal CPJ, Salazar XJN, Edison J, Oliveros B, editors. Biología sintética: aplicaciones y dilemas éticos. III Congreso Internacional de la REDBIOÉTICA UNESCO para América Latina y el Caribe Bioética en un continente de exclusión: de la reflexión a la acción; 2010.

Buldú JM, Wagemakers A, Sanjuán MA, Coloma A, de Luís O. Redes genéticas sintéticas: de lo simple a lo complejo. Revista española de física. 2007;21(3):10-6.

Faria-Tischer PC, Tischer CA. Nanobiotechnology: platform technology for biomaterials and biological applications the nanostructures. Biochem. Biotechnol. Rep. [Internet] 2012. [cited 2016 jul 7];1(1):32-53. Available from: https://www.researchgate.net/profile/Cesar_Tischer/publication/282287728_13190-53058-1-PB/links/560a857d08ae4d86bb139554.pdf

Britto FM, Castro GR. Nanotecnología, hacia un nuevo portal científico-tecnológico. Revista Química Viva. 2012;11(3):171.

Quadros ME, Pierson IVR, Tulve NS, Willis R, Rogers K, Thomas TA, et al. Release of silver from nanotechnology-based consumer products for children. Environmental science & technology. 2013;47(15):8894-901.

Mejias-Sánchez Y, Cabrera-Cruz N, Toledo-Fernández AM, Duany-Machado OJ. La nanotecnología y sus posibilidades de aplicación en el campo científico-tecnológico. Revista Cubana de Salud Pública. 2009;35(3):1-9.

Gutiérrez BJA, Meléndez AL, Liñan CYR, López DAL. La nanotecnología a 40 años de su aparición: Logros y tendencias. Ingenierías. 2015;18(66):13-22.

Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano today. 2009;4(1):66-80.

Romero-Morelos P, Peralta-Rodríguez R, Mendoza-Rodríguez M, Valdivia-Flores A, Marrero-Rodríguez D, Paniagua-García L, et al. La nanotecnología en apoyo a la investigación del cáncer. Revista Médica del Instituto Mexicano del Seguro Social. 2011;49(6):621-30.

Ruiz-Mirazo P, Moreno-Bergareche ÁJ. Biología sintética: enfrentándose a la vida para comprenderla, utilizarla o extenderla. Revista de pensamiento contemporaneo. 2012;(38):28-37.

de Lorenzo V. Biología sintética: la ingeniería al asalto de la complejidad biológica. Arbor. 2014;190(768):a149.

Lammoglia-Cobo MF, Lozano-Reyes R, Daniel C, Muñoz-Soto RB, López-Camacho C. La revolución en ingeniería genética: sistema CRISPR/Cas. Investigación en Discapacidad. 2016;5(2):116-28.

Casillas FL. CRISPR, el sueño divino hecho realidad. Rev Fac Med. 2015;58(4):55-60.

Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262-78.

Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, et al. Evolution and classification of the CRISPR–Cas systems. Nature Rev Microbiol. 2011;9(6):467-77.

Al-Attar S, Westra ER, van der Oost J, Brouns SJ. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes. J Biol Chem. 2011;392(4):277-89.

Quintili M. Nanociencia y Nanotecnología... un mundo pequeño. Cuadernos del Centro de Estudios en Diseño y Comunicación Ensayos. 2012;(42):125-55.

Fernández RA, Villacis SC, Posada RA, Posada MA, editors. Análisis Holístico de Nuevos Desafíos, Paradigmas Tecnológicos y Fundamentos Bioéticos en la Medicina Futurista. Conference Proceedings. 2017;1(1):410-420.

Schmidt F, Platt RJ. Applications of CRISPR-Cas for synthetic biology and genetic recording. Current Opinion in Systems Biology. 2017;5:9-15.

Schaefer KA, Wu W-H, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB. Unexpected mutations after CRISPR-Cas9 editing in vivo. Nature methods. 2017;14(6):547-8.

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819-23.

Fineran PC, Charpentier E. Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. Annu Rev Virol. 2012;434(2):202-9.

Nam KH, Ding F, Haitjema C, Huang Q, DeLisa MP, Ke A. Double-stranded endonuclease activity in Bacillus halodurans clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas2 protein. J Biol Chem. 2012;287(43):35943-52.

Barrangou R. CRISPR‐Cas systems and RNA‐guided interference. Wiley Interdisciplinary Reviews: RNA. 2013;4(3):267-78.

Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327(5962):167-70.

Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.

Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012;482(7385):331-8.

Babu M, Beloglazova N, Flick R, Graham C, Skarina T, Nocek B, et al. A dual function of the CRISPR–Cas system in bacterial antivirus immunity and DNA repair. Molecular microbiology. 2011;79(2):484-502.

Mico A. Harvard team turns bacteria into living hard drives. Bucarest: ZME Science; 2016. Disponible en: http://www.zmescience.com/research/bacteria-drives-56791/

Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annual review of genetics. 2011;45:273-97.

Sampson TR, Saroj SD, Llewellyn AC, Tzeng Y-L, Weiss DS. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature. 2013;497(7448):254-7.

Mojica F, Diez-Villasenor C, Garcia-Martinez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology. 2009;155(3):733-40.

Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nature communications. 2012;3:945.

Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology advances. 2015;33(1):41-52.

Stoddard BL. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure. 2011;19(1):7-15.

Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. ‎Nat Rev Genet. 2010;11(9):636-46.

Cox DBT, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. ‎Nat Med. 2015;21(2):121-31.

Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, et al. A prudent path forward for genomic engineering and germline gene modification. Science. 2015;348(6230):36-8.

Kayser MS, Biron D. Sleep and Development in Genetically Tractable Model Organisms. Genetics. 2016;203(1):21-33.

Shokralla S, Spall JL, Gibson JF, Hajibabaei M. Next‐generation sequencing technologies for environmental DNA research. Mol Ecol. 2012;21(8):1794-805.

Dorman CJ. Regulation of transcription by DNA supercoiling in Mycoplasma genitalium: global control in the smallest known self‐replicating genome. Molecular microbiology. 2011;81(2):302-4.

Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang R-Y, Algire MA, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. science. 2010;329(5987):52-6.

Church GM, Gao Y, Kosuri S. Next-generation digital information storage in DNA. Science. 2012;337(6102):1628.

Nielsen AA, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, et al. Genetic circuit design automation. Science. 2016;352(6281):aac7341.

AlBar AM, Hoque MR. Development of Web-Based e-Discipline System:

A Case Study for the Kingdom of Saudi Arabia. JACN. 2015;3(3)243-246.

Sandoval MGG, Torrado HDA, Pinzón ML, Fuentes ASF. Buenas prácticas aplicadas a la implementacion colaborativo de aplicativos web. Revista MundoFesc. 2016;2(10):27-30.

Tyagi N, Arora S, Deshmukh SK, Singh S, Marimuthu S, Singh AP. Exploiting nanotechnology for the development of MicroRNA-based cancer therapeutics. Journal of Biomedical Nanotechnology. 2016;12(1):28-42.

Douda J, Calva P, Torchynska T, Peña Sierra R, de la Rosa Vázquez J. Marcadores Cuánticos para la Detección de Cáncer: Revisión. Superficies y vacío. 2008;21(4):10-5.

Castillo A. Edicion de genes para el tratamiento del cancer de pulmon (CRISPR-Cas9). Colombia Medica. 2016;47(4):178-81.

Feng Y, Sassi S, Shen JK, Yang X, Gao Y, Osaka E, et al. Targeting Cdk11 in osteosarcoma cells using the CRISPR‐cas9 system. Journal of orthopaedic research. 2015;33(2):199-207.

Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9–mediated editing of germline DNA. Science. 2014;345(6201):1184-8.

Jung YW, Hysolli E, Kim KY, Tanaka Y, Park IH. Human induced pluripotent stem cells and neurodegenerative disease: prospects for novel therapies. Current opinion in neurology. 2012;25(2):125.

Published

2017-12-06

How to Cite

1.
Sáenz-Castiblanco LX, Angarita-Merchán M, Lopez-Velandia DP. Application of the nanobiotechnology with the system CRISP-Cas. Univ. Salud [Internet]. 2017Dec.6 [cited 2024Nov.21];19(3):400-9. Available from: https://revistas.udenar.edu.co/index.php/usalud/article/view/3084

Issue

Section

Review article

Similar Articles

You may also start an advanced similarity search for this article.