Addition of a probiotic containing microenscapsulated Lactobacillus plantarum to chicken feed
DOI:
https://doi.org/10.22267/rus.212302.227Keywords:
Bacteria, Lactobacillus, Microbiota, Functional food, ProbioticsAbstract
Introduction: Introduction: Usage of growth-promoting antibiotics in poultry production is limited due to the increase in bacterial resistance. An alternative to assess microencapsulated probiotics and their effect on gut health is presented in this study. Objective: To determine the effect of microencapsulated Lactobacillus plantarum on intestinal and immunological parameters in broilers. Materials and methods: 240 Ross-308-AP chickens (one day old) were fed with or without the addition of a probiotic, under the following model: without probiotic (T0); with commercial probiotic (T1); with probiotic containing either microencapsulated (T2) or non-microencapsulated (T3) L. plantarum. ATCC-8014 was microencapsulated by spray drying, assessing its viability in (%). Alcian blue, scanning microscopy, and immunohistochemistry were used to evaluate intestinal, morpho-histopathological, and immunological parameters. Microbial abundance was quantified by UFC/ml. Results: Microencapsulation of L. plantarum induced an 88.1% in vivo viability. T2 treatment improved both immunological parameters and the intestinal population of beneficial bacteria (Lactobacillus) (9.13x105 UFC/ml), which was significantly higher than that found in T1 (8.91x105), T3 (8.23x105), and control T0 (9.18x104), (p<0.05). Conclusion: Adding microencapsulated L. plantarum to chicken feed improves immunological parameters and increases the population of beneficial bacteria in the intestinal microbiota.
Downloads
Metrics
References
Ángel-Isaza J, Mesa-Salgado N, Narváez-Solarte W. Organic acids, an alternative in poultry nutrition: a review. Rev. CES Med. Zootec. 2019;14(2):45-58. Disponible en: http://www.scielo.org.co/pdf/cmvz/v14n2/1900-9607-cmvz-14-02-45.pdf
Kim W, Lillehoj H. Immunity, immunomodulation, and antibiotic alternatives to maximize the genetic potential of poultry for growth and disease response. Animal Feed Science and Technology. 2019;250:41-50. Disponible en: https://doi.org/10.1016/j.anifeedsci.2018.09.016
Oyedeji A, Msagati T, Williams A, Benson N. Determination of antibiotic residues in frozen poultry by a solid-phase dispersion method using liquid chromatography-triple quadrupole mass spectrometry. Toxrepor. 2019;6:951-6. doi: 10.1016/j.toxrep.2019.09.005
Wu Z. Antimicrobial use in food animal production: situation analysis and contributing factors. Fron Agricul Scien and Engin. 2018;5(3):301-31. Disponible en: https://doi.org/10.15302/J-FASE-2018207
Coyne L, Arief R, Benigno C, Giang V, Huong L, Jeamsripong S, et al. Characterizing antimicrobial use in the livestock sector in three south east Asian countries (Indonesia, Thailand, and Vietnam). Antibiotics. 2019;8(1):33-45. doi: 10.3390/antibiotics8010033
Pham T, Rossi P, Dinh H, Pham N, Tran P, Ho T, et al. Analysis of antibiotic multi-resistant bacteria and resistance genes in the effluent of an intensive shrimp farm (long an, vietnam). Journal of Enviromen Managene. 2018;214:149-56. DOI: 10.1016/j.jenvman.2018.02.089
Gadde U, Kim W, Oh S, Lillehoj H. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Animal Health Resear Rev. 2017;18(1):26-45. doi: 10.1017/S1466252316000207
Knackstedt R, Gatherwright J. The role of thermal injury on intestinal bacterial translocation and the mitigating role of probiotics: A review of animal and human studies. Burns. 2020;46(5):1005-12. Disponible en: https://doi.org/10.1016/j.burns.2019.07.007
Jurado-Gámez H, Jarrín-Jarrín V, Bustamante-Melo J. Efecto bioconservante del sobrenadante de Lactobacillus plantarum y Lactobacillus lactis en lomo de cerdo (Longisimus dorsi). Rev de Med Veter. 2017;(35):159-73. Disponible en: https://doi.org/10.19052/mv.4399
Montes A, Santacruz A, Sañudo J, Pazos Á. Efecto in vitro de Lactobacillus casei subsp rhamnosus sobre el crecimiento de un aislado de Helicobacter pylori. Universidad y Salud. 2003;1(4):5-12. Disponible en: https://revistas.udenar.edu.co/index.php/usalud/article/view/302/pdf
Rodríguez-Barona S, Giraldo G, Montes L. Encapsulación de alimentos probióticos mediante liofilización en presencia de prebióticos. Infor Tecnol. 2016;27(6):135-44. Disponible en: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-07642016000600014
González R, Pérez J, Morón L. Efecto de la Microencapsulación sobre la viabilidad de Lactobacillus delbrueckii sometido a Jugos gástricos simulados. Infor Tecnol. 2015;26(5):11-6.
Disponible en: http://dx.doi.org/10.4067/S0718-07642015000500003
Figueroa P, Ceballos M, Hurtado A. Microencapsulación mediante secado por aspersión de aceite de mora (Rubus glaucus) extraido con CO2 supercrítico. Rev Colom de Quím. 2016;45(2):39-47. Disponible en: https://doi.org/10.15446/rev.colomb.quim.v45n2.57481
Mottet A, Tempio G. Global poultry production: current state and future outlook and challenges. World's Poultry Science Journal. 2017;73(2):245-56. Disponible en: https://doi.org/10.1017/S0043933917000071
Senne D, Panigrahy B, Morgan R. Effect of composting poultry carcasses on survival of exotic avian viruses: highly pathogenic avian influenza (HPAI) virus and adenovirus of egg drop syndrome-76. Avian diseases. 1994;38(4):733-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/7702505/
McReynolds J, Byrd J, Anderson R, Moore R, Edrington T, Genovese K, et al. Evaluation of immunosuppressants and dietary mechanisms in an experimental disease model for necrotic enteritis. Poultry Science. 2004;83(12):1948-52. Disponible en: https://doi.org/10.1093/ps/83.12.1948
Chen H, Li X, Liu B, Meng X. Microencapsulation of Lactobacillus bulgaricus and survival assays under simulated gastrointestinal conditions. Journ of Func Foods. 2017;29:248-55. Disponible en: https://doi.org/10.1016/j.jff.2016.12.015
Wagner W. Using IBM® SPSS® statistics for research methods and social science statistics. 7TH. Sage Publications, 2019. Disponible en: https://us.sagepub.com/en-us/nam/using-ibm®-spss®-statistics-for-research-methods-and-social-science-statistics/book258010
Beauchamp TL. Principles of Biomedical Ethics. 6 ed. New York: Oxford University Press; 2009. https://books.google.com.co/books?hl=es&lr=&id=_14H7MOw1o4C&oi=fnd&pg=PR9&dq=Beauchamp+TL.+Principles+of+Biomedical+Ethics.+6+ed.+New+York
Jurado H, Sinsajoa M, Narváez M. Evaluación de Lactobacillus plantarum microencapsulado y su viabilidad bajo condiciones gastrointestinales simuladas e inhibición frente a Escherichia coli 0157:H7. Rev. Med. Vet. Zoot. 2019;66(3):231-44. Disponible en: https://doi.org/10.15446/rfmvz.v66n3.84260
Ramos D, Gómez M, Fernández D. Métodos de obtención de microesferas biodegradables. Rev Cubana Farm. 2001;35(2):126-35. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0034-75152001000200009&lng=es&nrm=iso
Moayyedi M, Eskandari M, Rad A, Ziaee E, Khodaparast M, Golmakani M. Effect of drying methods (electrospraying, freeze drying and spray drying) on survival and viability of microencapsulated Lactobacillus rhamnosus ATCC 7469. Journal of func foods. 2018;40:391-9. Disponible en: https://doi.org/10.1016/j.jff.2017.11.016
Nunes G, Etchepare M, Cichoski A, Zepka L, Lopes E, Barin J, et al. Inulin, hi-maize, and trehalose as thermal protectants for increasing viability of Lactobacillus acidophilus encapsulated by spray drying. LWT. 2018;89:128-33. Disponible en: https://doi.org/10.1016/j.lwt.2017.10.032
Huang S, Gaucher F, Cauty C, Jardin J, Loir Y, Jeantet R, et al. Growth in hyper-concentrated sweet whey triggers multi stress tolerance and spray drying survival in Lactobacillus casei BL23: from the molecular basis to new perspectives for sustainable probiotic production. Front. Microbiol. 2018;9:1-12. Disponible en: https://www.frontiersin.org/articles/10.3389/fmicb.2018.02548/full
Samedi L, Charles A. Viability of 4 probiotic bacteria microencapsulated with arrowroot starch in the simulated gastrointestinal tract (git) and yoghurt. Foods. 2019;8(5):175-88. Disponible en: https://doi.org/10.3390/foods8050175
Frakolaki G, Giannou V, Kekos D, Tzia C. A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Crit Rev Food Sci Nutr. 2021;61(9):1515-36.
doi: 10.1080/10408398.2020.1761773
Dinkçi N, Akdeniz V, Akalin S. Survival of probiotics in functional foods during shelf life. Food Quality and Shelf Life. 2019;201-233. Disponible en: https://doi.org/10.1016/B978-0-12-817190-5.00006-9
Wang Y, Dong Z, Song D, Zhou H, Wang W, Miao W, et al. Effects of microencapsulated probiotics and prebiotics on growth performance, antioxidative abilities, immune functions, and caecal micro flora in broiler chickens. Food and Agricul Immun. 2018;29(1):859-69. Disponible en: https://doi.org/10.1080/09540105.2018.1463972
Ramos P, Cerqueira M, Teixeira J, Vicente A. Physiological protection of probiotic microcapsules by coatings. Crit Revi in Food Scien and Nutr. 2018;58(11):1864-77. doi: 10.1080/10408398.2017.1289148
Ford A, Harris L, Lacy B, Quigley E, Moayyedi P. Systematic review with meta‐analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. Alim Pharm & Therap. 2018;48(10):1044-60. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/apt.15001
Byakika S, Mukisa I, Byaruhanga Y, Muyanja C. A review of criteria and methods for evaluating the probiotic potential of microorganisms. Food Revie Intern. 2019;35(5):427-66. Disponible en: https://www.tandfonline.com/doi/full/10.1080/87559129.2019.1584815
Fasina Y, Lillehoj H. Characterization of intestinal immune response to Clostridium perfringens infection in broiler chickens. Poultry Science. 2019;98(1):188-98. Disponible en: https://doi.org/10.3382/ps/pey390
Rioux K, Madsen K, Fedorak R. El papel de la microflora entérica en la enfermedad inflamatoria intestinal: estudios en humanos y animales con probióticos y prebióticos. Gastroenterol Clin N Am. 2005;34(3):465–82. Disponible en: https://doi.org/10.1016/j.gtc.2005.05.005