contadores web
Skip to main navigation menu Skip to main content Skip to site footer

Social determinants of health

Vol. 27 No. 1 (2025)

Effect of climate variability on the incidence of dengue in Palmira, Colombia (2010-2015)

DOI
https://doi.org/10.22267/rus.252701.339
Submitted
May 23, 2022
Published
2025-01-13

Abstract

Introduction: Sociocultural and economic conditions as well as climate variability can affect the incidence of dengue. Objective: To determine the impact of climate variability on the frequency of dengue cases in Palmira, Colombia, between 2010 and 2015. Materials and methods: Ecological and exploratory study, which related temperature, precipitation, and reported and confirmed cases of dengue. The frequency of dengue as well as its annual and monthly averages and medians were registered. The Pearson’s correlation coefficient was used to analyze cases and climate variables. Results: 2,832 cases of dengue were analyzed during the study period, with an annual average of 472. The association between the analyzed climate variables and the incidence of dengue was confirmed in 65 % of the cases. In 2010, the highest incidence of dengue and the highest average rainfall level were both reported. Also, the incidence of dengue increased coincidentally after the end of La Niña Phenomenon (2011). Conclusion: Between 2010 and 2015, a correlation between the incidence of dengue and climate variables (temperature and precipitation) was found in Palmira. However, future studies should analyze sociodemographic, cultural, behavioral, and geographic variables to better understand the dynamics of dengue.

References

  1. Organización Mundial de la Salud (OMS). Vector-borne diseases [Internet]. OMS; [citado 2023 Ene 16]. Disponible en: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
  2. Organización Panamericana de la Salud (OPS), Organización Mundial de la Salud (OMS). Actualización Epidemiológica: Dengue y otras Arbovirosis (10 junio 2020) [Internet]. Washington D.C: OPS/OMS; 2020. Disponible en: https://iris.paho.org/handle/10665.2/52289
  3. Maestre Serrano R, Gómez Camargo D. Dengue: epidemiología, políticas públicas y resistencia de vectores a insecticidas. Rev Cienc Biomed [Internet]. 2013 [citado 2023 Enero 16]; 4(2):302-317. Disponible en: https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/2826
  4. Instituto Nacional de Salud de Colombia (INS). Boletín epidemiológico semanal. Semana epidemiológica 33: 15 al 21 de agosto de 2021 [Internet]. (COL): INS; 2021. DOI: 10.33610/23576189.2021.33
  5. Instituto Nacional de Salud de Colombia (INS). Informe de Evento Dengue, Colombia, 2019 [Internet]. (COL): INS; 2019 [2023 Ene 16]. Disponible en: https://www.ins.gov.co/buscador-eventos/Informesdeevento/DENGUE_2019.pdf
  6. Boletín del Observatorio de Salud Pública de Palmira #5 Enfermedad por Dengue - Semanas epidemiológicas 1-32 -Agosto 2020- [Internet]. Alcaldía de Palmira; 2020 [citado 2023 Ene 16]. Disponible en: https://oldpage.palmira.gov.co/index.php/9199-balancedengueenpalmira
  7. Organización Mundial de la Salud (OMS). Scaling up the response to infectious diseases: a way out of poverty: report on infectious diseases 2002 [Internet]. Geneva (CHE): OMS; 2002. Disponible en: https://apps.who.int/iris/handle/10665/67248
  8. Organización Panamericana de la Salud (OPS). Últimos adelantos técnicos en la prevención y el control del dengue en la Región de las Américas. Informe de reunión (28-29 de mayo del 2014, Washington DC) [Internet]. Washington D.C (USA): OPS; 2014. Disponible en: https://iris.paho.org/handle/10665.2/31294
  9. Ordoñez-Sierra G, Sarmiento-Senior D, Jaramillo Gomez JF, Giraldo P, Porras Ramírez A, Olano VA. Multilevel analysis of social, climatic and entomological factors that influenced dengue occurrence in three municipalities in Colombia. One Health [Internet]. 2021; 12:100234. DOI: 10.1016/j.onehlt.2021.100234
  10. Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S. Climate change and dengue: A critical and systematic review of quantitative modelling approaches. BMC Infect Dis [Internet]. 2014; 14(1):167. DOI: 10.1186/1471-2334-14-167
  11. Baharom M, Ahmad N, Hod R, Arsad FS, Tangang F. The impact of meteorological factors on communicable disease incidence and its projection: A systematic review. Int J Environ Res Public Health [Internet]. 2021; 18(21):11117. DOI: 10.3390/ijerph182111117
  12. Li C, Lu Y, Liu J, Wu X. Climate change and dengue fever transmission in China: Evidences and challenges. Sci Total Environ [Internet]. 2018; 622-623:493-501. DOI: 10.1016/j.scitotenv.2017.11.326
  13. Baharom M, Ahmad N, Hod R, Abdul Manaf MR. Dengue early warning system as outbreak prediction tool: A systematic review. Risk Manag Healthc Policy [Internet]. 2022; 15:871-886. DOI: 10.2147/RMHP.S361106
  14. Rúa-Uribe GL, Suárez-Acosta C, Chauca J, Ventosilla P, Almanza R. Modelización del efecto de la variabilidad climática local sobre la transmisión de dengue en Medellín (Colombia) mediante análisis de series temporales. Biomédica [Internet]. 2013; 33(Suppl 1):142-152. DOI: 10.7705/biomedica.v33i0.1444
  15. Instituto Nacional de Salud de Colombia (INS). Vigilancia y análisis del riesgo en salud pública, protocolo de vigilancia en salud pública dengue [Internet]. (COL): INS; 2017 [citado 2023 Ene 16]. Disponible en: https://www.ins.gov.co/Noticias/Dengue/7.%20Dengue%20PROTOCOLO.pdf
  16. Bhatia S, Bansal D, Patil S, Pandya S, Ilyas QM, Imran S. A retrospective study of climate change affecting dengue: Evidences, challenges and future directions. Front Public Health [Internet]. 2022; 10:884645. DOI: 10.3389/fpubh.2022.884645
  17. Sarti E, L’Azou M, Mercado M, Kuri P, Siqueira JB Jr, Solis E, et al. A comparative study on active and passive epidemiological surveillance for dengue in five countries of Latin America. Int J Infect Dis [Internet]. 2016; 44:44-49. DOI: 10.1016/j.ijid.2016.01.015
  18. Salazar Ceballos A, Álvarez Miño L. Asociación entre factores climatológicos y tasa de incidencia del dengue en Santa Marta, Colombia, 2007-2013 (*). Rev Cienc Biomed [Internet]. 2014 [citado 2023 Ene 16]; 5(1):41-47. Disponible en: https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/2886
  19. Cassab A, Morales V, Mattar S. Factores climáticos y casos de dengue en Montería, Colombia. 2003-2008. Rev Salud Púbica [Internet]. 2011 [citado 2023 Ene 16]; 13(1):115-128. Disponible en: https://repositorio.unal.edu.co/handle/unal/43556
  20. Brunkard JM, Cifuentes E, Rothenberg SJ. Assessing the roles of temperature, precipitation, and ENSO in dengue re-emergence on the Texas-Mexico border region. Salud Publica Mex [Internet]. 2008; 50(3):227-234. DOI: 10.1590/s0036-36342008000300006
  21. de Sousa SC, Carneiro M, Eiras ÁE, Bezerra JMT, Barbosa DS. Factores asociados a la aparición de epidemias de dengue en Brasil: Revisión sistemática. Rev Panam Salud Publica [Internet]. 2021; 45:e84. DOI: 10.26633/RPSP.2021.84
  22. Gutierrez-Barbosa H, Medina-Moreno S, Zapata JC, Chua JV. Dengue infections in Colombia: Epidemiological trends of a hyperendemic country. Trop Med Infect Dis [Internet]. 2020; 5(4):156. DOI: 10.3390/tropicalmed5040156
  23. Kronenwetter-Koepel TA, Meece JK, Miller CA, Reed KD. Surveillance of above- and below-ground mosquito breeding habitats in a rural midwestern community: Baseline data for larvicidal control measures against West Nile Virus vectors. Clin Med Res [Internet]. 2005;3(1):3-12. DOI: 10.3121/cmr.3.1.3
  24. Krystosik AR, Curtis A, Buritica P, Ajayakumar J, Squires R, Dávalos D, et al. Community context and sub-neighborhood scale detail to explain dengue, chikungunya and Zika patterns in Cali, Colombia. PLoS One [Internet]. 2017; 12(8):e0181208. DOI: 10.1371/journal.pone.0181208
  25. Semenza JC, Rocklöv J, Ebi KL. Climate change and cascading risks from infectious disease. Infect Dis Ther [Internet]. 2022; 11(4):1371-1390. DOI: 10.1007/s40121-022-00647-3
  26. Lowe R, Lee SA, O’Reilly KM, Brady OJ, Bastos L, Carrasco-Escobar G, et al. Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: A spatiotemporal modelling study. Lancet Planet Health [Internet]. 2021; 5(4):e209-e219. DOI: 10.1016/S2542-5196(20)30292-8
  27. Chen Y, Zhao Z, Li Z, Li W, Li Z, Guo R, et al. Spatiotemporal transmission patterns and determinants of dengue fever: A case study of Guangzhou, China. Int J Environ Res Public Health [Internet]. 2019; 16(14):2486. DOI: 10.3390/ijerph16142486
  28. Coalson JE, Anderson EJ, Santos EM, Madera Garcia V, Romine JK, Dominguez B, et al. The complex epidemiological relationship between flooding events and human outbreaks of mosquito-borne diseases: A scoping review. Environ Health Perspect [Internet]. 2021; 129(9):096002. DOI: 10.1289/EHP8887
  29. Benedum CM, Seidahmed OME, Eltahir EAB, Markuzon N. Statistical modeling of the effect of rainfall flushing on dengue transmission in Singapore. PLoS Negl Trop Dis [Internet]. 2018; 12(12):e0006935. DOI: 10.1371/journal.pntd.0006935
  30. Arcari P, Tapper N, Pfueller S. Regional variability in relationships between climate and dengue/DHF in Indonesia. Singap J Trop Geogr [Internet]. 2007; 28(3):251-272. DOI: 10.1111/j.1467-9493.2007.00300.x
  31. Johansson MA, Dominici F, Glass GE. Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl Trop Dis [Internet]. 2009; 3(2):e382. DOI: 10.1371/journal.pntd.0000382
  32. Vásquez Rodríguez AB. Factores geográficos, ecológicos y sociodemográficos en la ocurrencia de dengue en Cundinamarca [Tesis de Maestría]. Bogotá D.C (COL): Universidad Nacional de Colombia; 2019 [citado 2023 Ene 16]. Disponible en: https://repositorio.unal.edu.co/handle/unal/76319
  33. Vincenti-Gonzalez MF, Tami A, Lizarazo EF, Grillet ME. ENSO-driven climate variability promotes periodic major outbreaks of dengue in Venezuela. Sci Rep [Internet]. 2018; 8(1). DOI: 10.1038/s41598-018-24003-z

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Most read articles by the same author(s)